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Transition metal-catalyzed cycloaddition reactions represent
powerful methods for the construction of complex polycyclic
systems.1 The intermolecular [4 + 4] cycloisomerization is
representative of this class of transformations, in whichacyclic
dienes undergo formal cycloaddition reactions to furnish the
corresponding eight-membered rings.2,3 A significant limitation with
this process is the poor selectivity often obtained inheterocyclo-
additions employing stereoelectronically different 1,3-butadiene
derivatives. Although this limitation can be circumvented through
intramolecularity4 or related intermolecular variants, the direct
carbocyclization of a tethered enyne with a 1,3-diene has not been
described and would nonetheless provide a valuable addition to
this family of cycloaddition reactions.5 Herein, we now describe
the first metal-catalyzedintermolecular [4+ 2 + 2] cycloaddition
of the heteroatom-tethered enyne derivatives1 with 1,3-butadiene
for the construction of the bicyclic eight-membered heterocycles2
(eq 1).

The mechanistic hypothesis, outlined in Scheme 1 describes the
basis of thenewcarbocyclization reaction. We anticipated that the
tethered enynei should coordinate the metal leading to the formation
of the metallacycleiii , which upon addition of 1,3-butadiene should
promote migratory insertion followed by a reductive elimination
to afford the [4+ 2 + 2] cycloaddition adductv. The adVantage
of this approach is the ability to significantly increase the molecular
complexity of the cycloadduct through the introduction of additional
ring(s) and stereogenic centers.Moreover, given the significant
stereoelectronic difference between the enyne and diene compo-
nents, it should be possible to suppress the formation of the
homocycloaddition and/or oligomerization.6

Preliminary studies tested the feasibility of this hypothesis, as
outlined in Table 1. Treatment of the enyne1a with Wilkinson’s
catalyst (Rh(PPh3)3Cl) under an atmosphere of 1,3-butadiene in
refluxing toluene, furnished a trace amount of2a (entry 1), owing
to the propensity for the enyne1a to undergohomocycloaddition
to afford 3a (ds g 19:1).Gratifyingly, the silVer triflate modified
rhodium catalyst, furnished the desired cycloaddition adduct2a in
85% yield (entry 2).The ability to alter selectivity in this manner
prompted additional studies to explore the effect of various silver
salts on the cycloaddition (entries 2-5). Interestingly, a rather
intriguing trend in selectivity emerged from this study. In the
extreme case, the hexafluoroantimonate counterion completely

reverses the selectivity forheterocycloaddition in the presence of
1,3-butadiene, to afford thehomodimer3a in 89% yield. The origin
of this selectivity was attributed to the propensity for these catalysts
to promote oligomerization of 1,3-butadiene, thereby reducing its
effective concentration. Analysis of the crude reaction mixture
confirmed this hypothesis, in which the silver triflatemodified
catalyst furnished the least amount of oligomer, and thus explained
the origin of the excellent selectivity for theheterocycloaddition
(entry 2).

Table 2 outlines the examination of the influence of various
heteroatom tethers and alkyne substitution on the rhodium-catalyzed
[4 + 2 + 2] cycloaddition.7 This study demonstrated that nitrogen,
sulfur, and oxygen containing tethered enynes furnish the corre-
sponding cycloadducts in excellent yield and with analogous
selectivity. The cycloaddition is tolerant of both substituted and
unsubstituted alkynes, producing only trace amounts of the enyne
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Scheme 1

Table 1. Development of the Rhodium-Catalyzed [4 + 2 + 2]
Cycloaddition Reaction

entry additivea,b ratio of 2a: 3ac yield of 2a (%)d,e yield of 3a (%)f

1 none 1:8 7 (0) 57
2 AgOTf 28:1 85 (4) 3
3 AgBF4 11:1 74 (0) 7
4 AgPF6 2:1 49 (2) 27
5 AgSbF6 1:44 2 (6) 89

a All reactions were carried out on a 0.5 mmol reaction scale using 10
mol % of Wilkinson’s catalyst [Rh(PPh3)3Cl] in refluxing toluene under
an atmosphere of 1,3-butadiene.b The rhodium catalyst wasmodifiedwith
20 mol % of the silver salt as indicated.c Ratios ofhetero- and homo-
cycloaddition products were determined by capillary GLC and HPLC on
aliquots of the crude reaction mixture.d GLC yields.e Yields in parentheses
are for cyclooctadiene (by GLC).f HPLC yields.
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cycloisomerization and alkene isomerization products. Moreover,
the sulfone tethers provide a new class of substrates for carbocy-
clization reactions that utilize tethered enynes.

We envisioned that the development of atandem three-
component allylic amination/cycloaddition would highlight the
synthetic utility of this new carbocyclization reaction (eq 2).8

Treatment of the lithium salt ofN-tosylpropargylamine4 with allyl
carbonate in the presence of Wilkinson’s catalyst,modifiedwith
silver triflate, at room temperature furnished the enyne1a. The
reaction mixture was then heated at reflux forca. 12 h under an
atmosphere of 1,3-butadiene, to afford the cycloaddition adducts
2a/3a in 87% yield, as ag19:1 mixture favoring the hetero-
cycloaddition adduct2a.9

Encouraged by the results in Table 2, we decided to examine
the diastereoselectiveintermolecular rhodium-catalyzed [4+ 2 +
2] cycloaddition using a C-2 substituted derivative to direct the
carbocyclization. Preliminary attempts revealed that although the
cycloaddition was feasible, the reaction required reduced concentra-
tion to suppress unwanted side reactions. Treatment of the enyne
5 under the optimized reaction conditions (0.0625M), furnished the
azabicycles6 in 91% yield, as ag19:1 mixture of diastereoisomers
(eq 3). The stereochemistry was confirmed with the aid of an NOE
experiment, which established thesyn relationship of the protons
at C-2/C-3.

In conclusion, we have developed a newintermolecular metal-
catalyzed [4+ 2 + 2] cycloaddition of heteroatom-tethered enyne
derivatives with 1,3-butadiene. This study demonstrates that excel-

lent selectivity can be obtained for either thehomo- or hetero-
cycloaddition adducts through the judicious choice of metal
counterion. The development of thetandemrhodium-catalyzed
allylic substitution [4+ 2 + 2] cycloaddition provides a convenient
three-component coupling that circumvents the prior formation of
the enyne derivative. Finally, the introduction of a stereogenic center
at C-2 leads to a diastereoselective cycloaddition, which provides
a powerful new method for the construction of bicyclic octanoid
ring systems applicable to target-directed synthesis.
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Table 2. Scope of the Intermolecular Rhodium-Catalyzed [4 + 2
+ 2] Cycloaddition Reaction (eq 1)a

entry X R ratio of 2: 3b yield of 2 (%)c

1 TsN H a g19:1 91
2 “ Me b g19:1 91
3 “ Ph c g19:1 87
4 SO2 H d g19:1 79
5 “ Me e g19:1 73
6 “ Ph f g19:1 87
7 O H g g19:1 71
8 “ Me h g19:1 81
9 “ Ph i g19:1 92

a All reactions were carried out on a 0.5 mmol reaction scale using 10
mol % of Wilkinson’s catalyst [Rh(PPh3)3Cl], modified with 20 mol %
AgOTf, in refluxing toluene under an atmosphere of 1,3-butadiene.b Ratios
of hetero- andhomocycloadducts were determined by 400 MHz1H NMR
with the exception of2a/3a(26:1 by crude GLC/HPLC).c Isolated yields.
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