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Transition metal-catalyzed cycloaddition reactions represent Scheme 1

powerful methods for the construction of complex polycyclic s
systems. The intermolecular [4 + 4] cycloisomerization is Rh()L, AR
representative of this class of transformations, in whaclyclic v i

dienes undergo formal cycloaddition reactions to furnish the
corresponding eight-membered rirfgA significant limitation with
this process is the poor selectivity often obtainedhéterayclo- =\ _L, =

o ) . . . \/:E}m Y ><:RH_,.
additions employing stereoelectronically different 1,3-butadiene B
derivatives. Although this limitation can be circumvented through
intramolecularity* or relatedintermolecular variants, the direct
carbocyclization of a tethered enyne with a 1,3-diene has not been
described and would nonetheless provide a valuable addition to
this family of cycloaddition reactiorfsHerein, we now describe AN
thefirst metal-catalyzedhtermolecular [4+ 2 + 2] cycloaddition i
of the heteroatom-tethered enyne d_erlvatlsllelslth 1,3-butadiene Table 1. Development of the Rhodium-Catalyzed [4 + 2 + 2]
for the construction of the bicyclic eight-membered heterocyzles  cycioaddition Reaction

(eq 1). Rnl) H
cat.
R NN - TeN + Ts Ts
k/ AgX, Butadiene
H
2a 3a

1 2 entry additivea? ratio of 2a: 3a° yield of 2a (%)¢ yield of 3a (%)'
1 none 1:8 7(0) 57
The mechanistic hypothesis, outlined in Scheme 1 describes the g ﬁggg ffll ;32 ((3; ;’
basis of thenewcarbocyclization reaction. We anticipated thatthe 4 AgPFRs 21 49 (2) 27
tethered enyneshould coordinate the metal leading to the formation 5 AgSbFg 1:44 2 (6) 89

of the metallacycldii, which upon addition of 1,3-butadiene should

promote migratory insertion followed by a reductive elimination moa| /g/" gefa\;:\}ii&?rfs\évﬁfseccaatgliegt ([)thh ?Sa?k gl? irr?Tetjf:ur;ﬁctigoquzcnegeuﬁgg 10

to afford the [4+_ 2+72] PYC'and't!F’” addgcv. The adantage an atr;osphere of l,3-butac%/ieﬁe'[he rhodium catalyst v?/as;lodifiedwith

of this approach is the ability to significantly increase the molecular 20 mol % of the silver salt as indicatetiRatios of hetere and homo

complexity of the cycloadduct through the introduction of additional cycloaddition products were determined by capillary GLC and HPLC on

ring(s) and stereogenic centerdloreover, given the significant aliquots of the crude reaction m|xtur'éGLC_y|eIds.eY|eIds in parentheses
S ; are for cyclooctadiene (by GLC)HPLC yields.

stereoelectronic difference between the enyne and diene compo-

nents, it should be possible to suppress the formation of the

homaycloaddition and/or oligomerizatidh.

Preliminary studies tested the feasibility of this hypothesis, as
outlined in Table 1. Treatment of the enyha with Wilkinson’s
catalyst (Rh(PP§);Cl) under an atmosphere of 1,3-butadiene in
refluxing toluene, furnished a trace amountaf(entry 1), owing
to the propensity for the enyria to undergohomaycloaddition
to afford 3a (ds = 19:1). Gratifyingly, the siber triflate modified
rhodium catalyst, furnished the desired cycloaddition ad@adh (entry 2).

85% yield (entry 2)The ability to alter selectivity in this manner Table 2 outlines the examination of the influence of various

prompted additional St!J_d'eS to e.xplore the effec_t of various silver heteroatom tethers and alkyne substitution on the rhodium-catalyzed
salts on the cycloaddition (entries=8). Interestingly, a rather 14, 5 | 51 cycloaddition” This study demonstrated that nitrogen,
intriguing trend in selectivity emerged from this study. In the ¢, and oxygen containing tethered enynes furnish the corre-
extreme case, the hexafluoroantimonate counterion Completelysponding cycloadducts in excellent yield and with analogous
To whom correspondence should be addressed. E-mail: paevans@ selectwﬁy. The cycloaddition is tolerant of both substituted and
indiana.edu. unsubstituted alkynes, producing only trace amounts of the enyne

reverses the selectivity fdreteraycloaddition in the presence of
1,3-butadiene, to afford tHeomalimer3ain 89% yield. The origin

of this selectivity was attributed to the propensity for these catalysts
to promote oligomerization of 1,3-butadiene, thereby reducing its
effective concentration. Analysis of the crude reaction mixture
confirmed this hypothesis, in which the silver triflateodified
catalyst furnished the least amount of oligomer, and thus explained
the origin of the excellent selectivity for tHeeteraycloaddition
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Table 2. Scope of the Intermolecular Rhodium-Catalyzed [4 + 2
+ 2] Cycloaddition Reaction (eq 1)2

entry X R ratio of 2: 3° yield of 2 (%)°
1 TsN H a >19:1 91
2 “ Me b >19:1 91
3 “ Ph c >19:1 87
4 SO H d >19:1 79
5 “ Me e >19:1 73
6 “ Ph f >19:1 87
7 (0] H g >19:1 71
8 “ Me h >19:1 81
9 “ Ph i >19:1 92

a All reactions were carried out on a 0.5 mmol reaction scale using 10
mol % of Wilkinson’s catalyst [Rh(PRJsCI], modified with 20 mol %
AgOTf, in refluxing toluene under an atmosphere of 1,3-butadieRatios
of hetero andhomaycloadducts were determined by 400 MHz NMR
with the exception oRa/3a(26:1 by crude GLC/HPLCY Isolated yields.

cycloisomerization and alkene isomerization products. Moreover,

the sulfone tethers provide a new class of substrates for carbocy-

clization reactions that utilize tethered enynes.

We envisioned that the development of tandem three-
component allylic amination/cycloaddition would highlight the
synthetic utility of this new carbocyclization reaction (eq®2).
Treatment of the lithium salt dfl-tosylpropargylamind with allyl
carbonate in the presence of Wilkinson’s catalystdifiedwith
silver triflate, at room temperature furnished the enytae The
reaction mixture was then heated at reflux éa 12 h under an
atmosphere of 1,3-butadiene, to afford the cycloaddition adducts
2a/3ain 87% yield, as a>19:1 mixture favoring the hetero-

cycloaddition adducga.®
TSN@ )

Encouraged by the results in Table 2, we decided to examine
the diastereoselectivatermolecular rhodium-catalyzed [# 2 +
2] cycloaddition using a C-2 substituted derivative to direct the
carbocyclization. Preliminary attempts revealed that although the

cat. Rh(PPh;), Cl
A~ O0:Me
AgOTf, PhMe, RT;
1,3-butadiene , A
87%

Ts(Li)N/\

4

cycloaddition was feasible, the reaction required reduced concentra-
tion to suppress unwanted side reactions. Treatment of the enyne

5 under the optimized reaction conditions (0.0625M), furnished the
azabicycle$ in 91% yield, as &19:1 mixture of diastereocisomers
(eq 3). The stereochemistry was confirmed with the aid of an NOE
experiment, which established thgnrelationship of the protons

at C-2/C-3.

Me
cat. Rh(PPh,),Cl
TS)N\//\ T 3
Ng” N Me AgOTE, PhMe, A ;
1,3-Butadiene Np H
5 91% 6

In conclusion, we have developed a newermolecular metal-
catalyzed [4+ 2 + 2] cycloaddition of heteroatom-tethered enyne
derivatives with 1,3-butadiene. This study demonstrates that excel-

lent selectivity can be obtained for either theme or hetere
cycloaddition adducts through the judicious choice of metal
counterion. The development of thandemrhodium-catalyzed
allylic substitution [4+ 2 + 2] cycloaddition provides a convenient
three-component coupling that circumvents the prior formation of
the enyne derivative. Finally, the introduction of a stereogenic center
at C-2 leads to a diastereoselective cycloaddition, which provides
a powerful new method for the construction of bicyclic octanoid
ring systems applicable to target-directed synthesis.
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